Regional Seminar, Russia, June 2014
UHF PD GIS monitoring
Thomas Linn, Qualitrol
1. UHF PD monitoring
2. PD defect types
3. Insides of partial discharges!
4. PD localization
5. Return of experiences – some case studies!
1. UHF PD monitoring
2. PD defect types
3. Insides of partial discharges!
4. PD localization
5. Return of experiences – some case studies!
Components of PD monitoring system

- PD source
- PD Sensor
- Acquisition units
- Local Condition Monitoring (CM) and assessment Platform
- Network wide remote Condition Monitoring (CM) Platform
PD Signal - Stages in Transmission

Excitation
- location of the PD
- length of the discharge
- shape of the current pulse

Coupling

Propagation
- attenuation
- reflections at bends, barriers & changes in diameter
- division of signal at T sections
There are also dispersion & attenuation losses over longer lengths.
Physics of UHF PD Detection

- UHF coupler output waveform
- Outline of a cylindrical bushing ($\varepsilon_r = 5.5$)
- HV conductor
- Closed metal tank, 1 m3
- Air (free space)
- PD pulse
- 0.5 ns
- 100 ns
- UHF coupler
- Output waveform
PD monitoring UHF PD sensors

Example for internal UHF PD sensors

Example for UHF PD barrier sensors (external)

Example for UHF PD window sensors (external)
What Makes a UHF PDM System so Effective:

- can detect all known types of PD in GIS or Transformers
- can record data in a way which allows the analysis of PD using expert system PD pattern interpretation by ANN and feature extraction
- can instantly warn of active PD (no time delay)
- gives indication of the type of PD and therefore helps in determining the risk of failure
- suitable for periodic and continuous, on-line monitoring in-service
- applicable to all system voltages
- only IEC approved technique for use during HV commissioning tests (of GIS)
- Also suitable for other metal enclosed electrical plant such as, dead tank CBs, cable end boxes and switch-panels
1. UHF PD monitoring

2. PD defect types

3. Insides of partial discharges!

4. PD localization

5. Return of experiences – some case studies!
Causes of partial discharge in GIS

1- protrusions on conductor (fixed particle)
2- protrusions on enclosure (fixed particle)
3- floating parts (bad galvanic contact)
4- free particles on live parts and insulators
5- voids (delamination) between screens and insulation
6- voids and treeing in insulation
Protrusions on conductor (fixed particle)

Possible causes:
- Metallic particles glued by grease on the busbar
- Damages on the conductor tube due to improper handling during installation
- Metallic particles or protrusions covered by paint (production process)

Relevance:
- Very sensitive to impulse voltage/ transients (e.g. breaker or disconnect switch switching)

Remarks:
- Once protrusion covered by paint or metallic particle inside of paint, no PD, is present, but still there is the risk of flashover during switching events exists.
- Happens very seldom nowadays due to very excessive quality control
- Not the main focus in terms of PD monitoring
Protrusions on enclosure (fixed particle)

Possible causes:

- Metallic particles glued by grease on the inner surface of the enclosure
- Damages on the inner surface of the enclosure due to improper handling during installation
- Metallic particles or protrusions covered by paint (production process)

Relevance:

- Very sensitive to impulse voltage/transients (e.g. breaker or disconnect switch switching)

Remarks:

- Once protrusion covered by paint or metallic particle inside of paint, no PD, is present, but still there is the risk of flashover during switching events exists.
- Happens very seldom nowadays due to very excessive quality control
- Not the main focus in terms of PD monitoring
Floating part (bad galvanic contact)

Possible causes:

• To much paint on electrodes or screens
• Electrodes or screens are badly tighten
• Aging: metallic parts could get lose or break due to mechanical vibrations/forces

Relevance:

• Permanent discharge are resulting an eroding of the material and with the result, that the parts can break, fall down and cause a flashover
• Parts can break due to mechanical forces combined with aging

Remarks:

• Usually this type of defect will give very high and clear readings (except in case of a sudden loss of mechanical strength
• This kind of discharges related to aging is well in the focus of online monitoring
Free particles on live parts and insulators

Possible causes:
- Introduced during assembly (onsite)
- Created by aging of moving contacts

Relevance:
- Important to detect and removed during onsite testing to avoid break downs in service (related to the infant phase – very dangerous on the surface of a insulator)
- PD activity related to particles after switching operations are giving an indication about the condition of the breaker/ disconnect switch/ ground switch

Remarks:
- During stabilized condition PD activity due to particles is very seldom (particles moving to a place with lower field strength and will remain there without any sign)
- A mechanical impact like switching a breaker can make to particles to move and might cause in very seldom cases also a sudden breakdown without any sign of PD before.
Voids (delamination's) between screens and insulation

Possible causes:

- No proper cleaning of the inserts for insulators.
- Delamination’s on the inserts due to mechanical or thermal stress (aging)

Relevance:

- Once a discharge related to insulation material, the discharges are starting to erode the insulation material and will lead to an flashover in most of the cases (time between start of discharges and breakdown can be between several weeks and up to several years)

Remarks:

- Delamination's due to improper cleaning should be detected already during routine or onsite testing
- Delamination’s due to aging (thermal of mechanical) will be detected by use of PD monitoring
Voids and treeing in insulation

Possible causes:

- Voids due to casting process
- Voids due to delamination inside of insulation material (very rare)
- Cavities surrounded by insulating material

Relevance:

- Once a discharge related to insulation material, the discharges are starting to erode the insulation material and will lead to a flashover in most of the cases (time between start of discharges and breakdown can be between several weeks and up to several years)

Remarks:

- 60 to 80 % of detected PD activities are related to this type of defect
- Difficult to detect due to the ignition delay (up to several days)
What type of defects can be monitored?

Failure types, which can/should be detected by online PD monitoring

<table>
<thead>
<tr>
<th>Type of partial discharge</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating part (bad galvanic contact)</td>
<td>• Aging: metallic parts could get lose or break due to mechanical vibrations/forces</td>
</tr>
<tr>
<td>Free particles on live parts and insulators</td>
<td>• Created by aging of moving contacts</td>
</tr>
<tr>
<td>Voids (delamination’s) between screens/inserts and insulation</td>
<td>• Delamination’s on the inserts due to mechanical or thermal stress (aging)</td>
</tr>
<tr>
<td>Voids and treeing in insulation</td>
<td>• Voids due to casting process</td>
</tr>
<tr>
<td></td>
<td>• Voids due to delamination inside of insulation material (very rare)</td>
</tr>
<tr>
<td></td>
<td>• Cavities surrounded by insulating material</td>
</tr>
</tbody>
</table>
Failure types, which can not be detected by online PD monitoring

<table>
<thead>
<tr>
<th>Type of partial discharge</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protrusions on conductor (fixed particle)</td>
<td>• Metallic particles or protrusions covered by paint (production process)</td>
</tr>
<tr>
<td>Protrusions on enclosure (fixed particle)</td>
<td>• Metallic particles or protrusions covered by paint (production process)</td>
</tr>
<tr>
<td>Free particles on live parts and insulators</td>
<td>• During normal operation PD activity due to particles is very seldom (particles moving to a place with lower field strength and will remain there without any sign)</td>
</tr>
<tr>
<td></td>
<td>• A mechanical impact like switching a breaker can make to particles to move and might cause in very seldom cases also a sudden breakdown without any sign of PD before</td>
</tr>
</tbody>
</table>
1. UHF PD monitoring
2. PD defect types
3. Insides of partial discharges!
4. PD localization
5. Return of experiences – some case studies!
Inner PD equivalent circuit of void type discharges

- a) object under test with void
- b) equivalent circuit scheme

Small void: \(C_t \cong \gg C_3 \gg C_1 \gg C_2 \)

\[u_{10} = \frac{C_2}{C_1 + C_2} \ u(t) \]
V and I curves according to classic equivalent circuit (void)

- a) Voltage curve's
- b) Current curve's

\[q' = \int i(t) \, dt \approx (C_2 + C_3) \Delta U_t = C_2 \Delta U_1 = C_2/C_1 \Delta q_1, \quad C_2 + C_3 \approx C_t \]

Apparent charge q'

Measureable charge \(q_m \)

Coupling capacitor will be needed: \(q_m = C_k/(C_t + C_k) \, q' \)
Characteristic of void type PD

- Pulse-trains of opposite polarity
- Number of discharges increases with increasing voltage
- Their amplitude remains nearly the same
PD in solid insulation material
Breakdowns starting at trees
External partial discharge

- Needle-plane gap configuration
- C_1 capacity of the flashed over sparking gap
- R_2 resistance representing the charge carrier cloud around the needle point

$R_2 \gg 1/\omega C_1; \quad i_2 = u(t) / R_2$

$u_{10} = \hat{U} / (\omega C_1 R_2) \sin(\omega t - \pi/2)$

PD impulse will happen in the peak of the voltage wave
Corona discharges
Surface discharges
1. UHF PD monitoring
2. PD defect types
3. Insides of partial discharges!
4. PD localization
5. Return of experiences – some case studies!
UHF PD pulses travel at the speed of light inside the GIS and an electromagnetic wave.

Speed of light\[= 300,000,000 \text{ m/s}\]
\[= 300 \text{ m/} \mu \text{s}\]
\[= 0.3 \text{ m/ns}\]

This means it travels 1m every 3.3ns.

The pulse travels in both directions along the GIS away from the PD.
Setup for PD localization

\[d = \frac{(D - 0.3t)}{2} \text{ metres} \]

- \(D \) (m)
- \(d \) (m)
- \(t \) = time difference (ns)

PD source
Example for time of flight measurement
Example for time of flight measurement
Real time of flight signal on a scope
1. UHF PD monitoring
2. PD defect types
3. Insides of partial discharges!
4. PD localization
5. Return of experiences – some case studies!
GIS PD case studies

Over 9 years (1996 – 2004), outages taken to remove 55 defects.

<table>
<thead>
<tr>
<th>No. of monitored bay-years</th>
<th>No. of in-service breakdowns</th>
<th>No. of in-service breakdowns prevented</th>
<th>No. of bkdns prevented per 100 bay-years</th>
<th>No. of bkdns prevented per 100 coupler-years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1250</td>
<td>2</td>
<td>55</td>
<td>4.4</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Additional benefit of PD monitoring:

PDM used during HV commissioning on 22 new GIS detected 35 defects while voltage raised to test level…. excellent system for ‘cleaning up’ the GIS and transformers before going into service.
Examples from our experiences

- Ghunan 400KV GIS, Saudi Arabia
 - One of the substation in GCCI link
 - During conditioning at 130KV, PD activity was observed in circuit breaker
 - When the CB was opened a metallic particle (1-2mm in length) was found
 - Fault detected, and located by Qualitrol PDM system and services
 - Saved utility from a faulty installation
GIS PD case studies

Examples from our experiences

- Al Jasra 400KV GIS, Bahrain
 - One of the substation in GCCI link
 - PD activity was observed during operation
 - Fault detected, and located by Qualitrol PDM system and services
 - Investigation indicated surge arrestor was the source of the signal
 - Saved utility from potential outages and loss of...
Examples from our experiences

- Nuclear Power Plant, UK
 - Net electrical output: 1190 MW
 - Palm Joint Fault (1994)
 - Stress cone failure (in 2012)
 - Fault detected by Qualitrol PDM system and located prior to flashover
 - Saved potential loss of £250K per day for the utility (due to the loss of power supply)
Further on an online partial discharge system that has been in operation since 2001 will be described and some of the 11 issues, which were discovered before they had a chance to cause serious damages, will be discussed.
Itaipu Hydro Electrical Power plant

History:

Joint project between Paraguay and Brazil in Foz do Iguaçu and the world largest generator of renewable clean energy. The power plant started its energy production 1984 and the last 2 of the 18 turbines started to work 1991. In 2004 the plant was extended by 2 units (20 units now in total)

Facts and Figures:

Installed Capacity before 2004: 12.600 MW and after extension 14.000 MW

Production 2012: 98.2 Million MWh (new world record)
Itaipu Hydro Electrical Power plant

Location:

Situated on the border between Brazil and Paraguay, close to the Argentinean border.

Three substations (2 GIS substations, 50 and 60Hz installed in the power house and one conventional – Right Bank)
Gas insulated substation (GIS):

There are two GIS installed (50 and 60Hz) with a total busbar length of approximately 1km. Itaipu has 154 ground switches, which means 462 monitoring points available.
Partial Discharge Monitoring System:

Currently Itaipu has installed 144 OCU's, 432 individual points monitoring the couplers on the ground switches, more 16 OCU's were commissioned on 17/11/2009 monitoring the output line bays connected to couplers specially developed by DMS installed externally on the support insulators.

Today the total number of monitored points is \((144 + 16) \times 3 = 480\)
Further case studies

I) Breaker 85L02 S phase
Corona per particle in the housing
Further case studies

III) Breaker 86LI2 S phase
Particles detected after operation
Further case studies

IV) Breaker 05U09 R phase particles
Further case studies

V) Surge Arrestor A34-T1 Phase T

Event no. 668 recorded on 05 May 2006 at 09:00:00

Analysis: void/contamination 52%, not PD 21%, busbar corona 12%, particle 8%

Event no. 667 recorded on 05 May 2006 at 09:01:09

Analysis: particle 69%, not PD 29%
Further case studies
VI) Barrier (Disconnector Switch 55U9A) Bubble (void) in the resin epoxy / support insulator
Further case studies
Further case studies

VII) Surge Arrestor A10 T1-S phase S
Further case studies

VIII) Conductor on line 2, output bus phase S
Floating electrode
Further case studies

VIII) conductor line 2 output phase S
Floating electrode
Thank you